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Abstract: In this article, a series of problems related to the creation and application of 

quadrature and cubature formulas, including: finding errors of quadrature and cubature 

formulas in the Gilbert phases of differential functions; calculating error functionals of 

found extremal functions using extremal functions; finding the conditions for the existence 

and uniqueness of optimal quadrature and cubature formulas; developing new algorithms 

for constructing discrete operators based on optimal quadrature formulas, as well as 

determining the optimal coefficient adjustments, are discussed. 
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INTRODUCTION 

In the context of numerous scientific and practical studies conducted globally, 

solutions to problems arising are presented in terms of integral and differential equations. 

They are primarily solved using cubature and interpolation formulas. The algebraic and 

variational approaches to constructing such formulas exist, with initial algebraic formulas 

including Newton-Cotes, Gauss-type quadrature formulas, as well as Lagrange and Newton 

interpolation polynomials. The theory of variational approaches to creating such formulas 

is based on the work of American and Russian scientists. Developing new algorithms for 

constructing optimal formulas and interpolation splines based on algebraic and variational 

approaches, as well as evaluating their errors, is an essential task in mathematical analysis. 

In the years of independence in our country, attention has been paid to practical 

applications, especially emphasizing the theory of cubature formulas in mathematical 

analysis with a high degree of algebraic precision. Special attention has been given to 

creating Gauss-type cubature formulas based on the theory of invariants and orthogonal 

polynomials relative to the group of reflections of a regular simplex, which has led to 

significant results. Optimal cubature formulas for continuous and non-continuous 

functions with one or more variables in Sobolev spaces have been developed, achieving 

remarkable results. 

THE MAIN PART 
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At present, mathematical models with high precision for natural processes, 

formulated as differential and integral equations, as well as their systems, are gaining 

significant importance. The development of optimal quadrature and cubature formulas, as 

well as interpolation splines, in the Gilbert phases of differential functions for approximate 

solutions of these models is crucial. Purposeful scientific research, particularly in the 

following directions, is considered one of the important tasks: creating asymptotic optimal 

cubature formulas for various Gilbert and Banach phases of continuous and non-

continuous functions; developing cubature formulas based on Monte Carlo methods; 

constructing optimal quadrature and cubature formulas and evaluating their errors; and 

creating splines that minimize specific functionals. The scientific research conducted in the 

aforementioned directions within the scope of the stated scientific investigations 

elucidates the relevance of the topic of this dissertation. 

OPTIMUM QUADRATURE FOR APPROXIMATE CALCULATION OF FOURIER 

INTEGRALS FORMULAS 
4 2

4 2
2 1

d d

dx dx
   The discrete analogue of the operator. 

The structure of differential operators discretized with discrete analogs of optimal 

quadrature and interpolation formulas depends on various Gilbert phases,the analytical 

algorithm for finding coefficients in the ( )

2

mL phases of optimal cubature formulas is 

presented in the work [9,10]. S.L. Sobolev determined the discrete analogue of the m  

polyharmonic operator ( )[ ]m

hHD   and studied the constructed discrete analog 

parameters.The discrete operator ( )[ ]m

hHD   is quite complex to construct for n-dimensional 

cases, and this problem is still open. For a one-dimensional case 
2

2

m

m

d

dx
  , the discrete 

analogue of the differential operator ( )[ ]m

hD h was constructed by Z. J. Jamolov and X. M. 

Shadimetov.  
4 2

4 2
2 1

d d

dx dx
     In this place, we engage in constructing the discrete analogue of the 

operator. Let's examine the following equation. 

( )* ( ) ( )D h G h h    ,                                                                                     (1.1) 

In this place, ( )G h - corresponds to the discrete argument function that is suitable 

for the following function 

sgn
( )

4 2 2

x x x xx e e e e
G x x

   
  

 
,                                                                                               

(1.2) 

In this place, ( )h   is the discrete delta function. 
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The search for a function D(hβ) satisfying equation (1.1) with a discrete argument is 

necessary. 

CERTAIN FORMULAS 

Here, we mainly rely on discrete argument functions and their operations [1,2]. 

Now, let's illustrate several known formulas used in constructing the discrete 

analogue of the differential operator (for example, see [1]). 

For continuous functions, direct and inverse Fourier transformations are correct. 

2 1 2[ ] ( ) , [ ] ( ) ,ipx ipxF x e dx F p e dp    
 

 

 

                                                                         

(1.3) 

Distinctive properties of Fourier transformations. 

[ * ] [ ] [ ],F F F                                                                                                                                

(1.4) 

[ ] [ ]* [ ],F F F                                                                                                                                

(1.5) 
( )[ ( )] ( 2 ) , [ ( )] 1.a aF x ip F x                                                                                                        

(1.6) 

 function properties, 
1( ) ( )hx h x                                                                                                                                               

(1.7) 

( ) ( ) ( ) ( ),x a f x x a f a                                                                                                              

(1.8) 
( ) ( )( )* ( ) ( ),a ax f x f x                                                                                                                             

(1.9) 

2

0 ( ) ( ) ixx x e  

 

  
 

 

                                                                                                         

(1.10) 

We now use the solution of the system (1.22)-(1.24) with the assumption that β<0 

and β>N. Let 0C    be defined as  . Then, utilizing the definitions, we can express the 

system (1.22)-(1.24) in the following form in a compact manner. 

1 2* ( ) ( ), 0,1,... ,h hC G h d e d e f h N 

                                                                     

(1.11) 

0

1,
N

hC e 


 

                                                                                                                                               

(1.12) 
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1

0

(1 ),
N

hC e e




 



                                                                                                                                 

(1.13) 

In this place  ,            
1

0

( ) ( )f h G x h dx    

1 11
[8 (1 )( ) (1 )( ) (2 3 ) (2 ) ].

8

h h h he h e e h e e e e e                                 

(1.14) 

Now we solve the problem equivalent to the following problem 2. 

Problem 1. Given ( )f h , find constants for , 0,1,...,C N    and 1 2,d d   to satisfy 

the system (1.11)-(1.13) .Afterwards, we express C   in terms of the following functions 

( )h   and ( )u h . 

( ) * ( ),h C G h                                                                                                                                 

(1.15) 

1 2( ) ( ) .h hu h h d e d e                                                                                                              

(1.16) 

In this case, we express the coefficients C  through the function ( )u h . For this 

purpose, we utilize the discrete argument function D(hβ) satisfying the (1.1) equation, 

namely, using Theorems 4 and 5. Consequently, by considering equation (1.16) and taking 

into account Theorems 4 and 5, we obtain the following expression: 

( )* ( )C D h u h                                                                                                                                   

(1.17) 

In this way, finding the function ( )u h , the optimal coefficients for C  can be 

obtained from equation (1.17). To compute the derivative in equation (1.17), it is required 

to have all values of the function ( )u h  for every integer    Based on equation (1.11), 

where 0,1,..., ,N  we need the values of ( ) ( )u h f h  for all integers in this range. 

Now, for 0  and N  , the form of the function ( )u h is needed. Given that 0C   

for 0  and N  , the expression of ( )u h should accommodate these conditions. 

( )* ( ) 0, [0,1]C D h u h h       

Let's assume, for instance, that 0  In this case, we can use equations (1.11) and 

the form of the function ( )G x as follows. 

0

( ) ( ) * ( ) ( )
N

h G h C C G h h C G h h  
 

      


 

        

0

sgn( )
( )

4 2 2

h h h h h h h hN h h e e e e
C h h

       




 
 

   



   
    

 
  
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0

1
( ) ( )

8

N
h h h h h h h hC h h e h h e e e       




      



           

0

1

8

N
h h h h h h h h h h h hC h e h e h e h e e e           




        



               

 

taking equations (1.11) and (1.12) into account, 

1

0 0

1
( ) ( 1) (1 ) ( 1) ( 1)

8

N N
h h h h h hh h e e h e e e C h e e C h e     

 

 

        

 

 
                 

 
   

11
( 1) (1 ) ( 1) ( 1)

8

h hh e e h e e                

 

0 0

1 1
.

8 8

N N
h h h he C h e e C h e   

 
 

  

 

         

 1 2

0 0

1 1
,

8 8

N N
h hb C h e b C h e 

 
 

 

 

        specifying that, 0   at we get the 

following 

1

1 2

1
( ) ( 1) (1 ) ( 1) ( 1)

8

h h h hh h e e h e e b e b e                                   

(1.18) 

And now N   

1

1 2

1
( ) ( 1) (1 ) ( 1) ( 1)

8

h h h hh h e e h e e b e b e                                     

(1.19)  
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1

1 2 1 2

1

1 2 1 2

1
( 1) (1 ) ( 1) ( 1)

8

, 0

( ) ( ), 0

1
( 1) (1 ) ( 1) ( 1)

8

,

h h

h h h h

h h

h h h h

h e e h e e

b e b e d e d e

u h f h N

h e e h e e

b e b e d e d e N

 

   

 

   

 



  

 



 

 

 

 


          


    


  


          

     

 

                   1 1 1 2 2 2, ,d b d d b d       

      1 1 1 2 2 2, ,d b d d b d       

we come to the following issue by entering the designation. 

Conclusion 

In this work, an exponential optimal quadrature formula has been constructed in the 

Gilbert space with a dimension of 2 2( )K P . Initially, an extremal function was found to 

calculate the norm of the error functional for this quadrature formula. Then, using this 

extremal function, the norm of the error functional was determined. The existence and 

convergence of the exponential optimal quadrature formula were demonstrated. A system 

of linear equations was obtained for the coefficients of the optimal quadrature formula. To 

find an analytical representation of the optimal coefficients that will be the solution of this 

system 
4 2

4 2
2 1

d d

dx dx
   differential operator a discrete analog was built and its properties 

were studied. Finally, optimal odds found. 
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