# ЭЛЕМЕНТНЫЙ СОСТАВ ГРУНТОВЫХ ВОД ГОРОДА АНДИЖАНА РЕСПУБЛИКИ УЗБЕКИСТАН

## https://doi.org/10.5281/zenodo.10617858

## Ахназарова Зиравард Акилесовна

магистр СПО 2023, Томский политехнический университет, г.Томск, Россия; Ферганский политехнический институт, г. Фергана, Узбекистан

**Аннотация:** Представлены результаты элементного состава грунтовых вод города Андижана республики Узбекистан.

**Ключевые слова:** токсичность, элементный состав, поверхностные воды, химический состав.

# ELEMENTAL COMPOSITION OF GROUNDWATER OF THE CITY OF ANDIJAN, REPUBLIC OF UZBEKISTAN

#### Ahnazarova Ziravard Akilesovna

Graduate Joint Master's Programme 2023, Tomsk Polytechnic University, Tomsk, Russian Federation; Fergana Polytechnic Institute, Fergana, Uzbekistan

**Abstract:** The results of the elemental composition of groundwater in the city of Andijan, Republic of Uzbekistan, are presented.

**Key words:** toxicity, elemental composition, surface waters, chemical composition.

**Целью** исследования является определение элементного состава грунтовых вод г.Андижана р.Узбекистан. Основными з**адачами** является **определение** химического состава и токсичности грунтовых вод, используемых для рекреационных целей.

В основу работы положены данные исследования грунтовых вод г.Андижана р.Узбекистан в районе археологического памятника крепости Каъла (комплекс Каъла), построенной в 1880-1881 гг в качестве военной крепости войск царской России (колодезная вода, используемая как питьевая и для других хозяйственных целей) в период месяца апрель 2023 г. Дата проведения исследований 25.04.2023 г. с выдачей заключения 28.04.2023г. Всего было исследовано 1 проба воды. Колодец с водой находится в пределах городской и сельскохозяйственной территорий и используются населением в рекреационных целях. Вода выведена на поверхность земли специальной системой водоснабжения.

Проводилось исследование химического анализа на элементный состав грунтовых вод из колодца в г.Андижане на территории архео7логического памятника

крепости Каъла. Особенности химического состава вод озер определялись по содержанию в них основных макро- и микрокомпонентов — анионов  ${\rm CO_3}^{2^-}$ ,  ${\rm HCO_3}^-$ ,  ${\rm SO_4}^{2^-}$ ,  ${\rm Cl}^-$  и катионов  ${\rm Ca}^{2^+}$ ,  ${\rm Mg}^{2^+}$ ,  ${\rm Na}^+$ ,  ${\rm K}^+$ , соединений группы азота -  ${\rm NH_4}^+$ ,  ${\rm NO_2}^-$ ,  ${\rm NO_3}^-$ , а так же минерализация, общая жесткость, перманганатная окисляемость, удельная электрическая проводимость, pH.

Во время исследований использовались следующие методы: потенциометрический, кондуктометрический, титриметрический (кислотно-основное титрование), комплексонометрическое титрование, перганатометрическое спектрофотометрический, титрование, фотоколориметрический, пламеннофотометрический, гравиметрический.

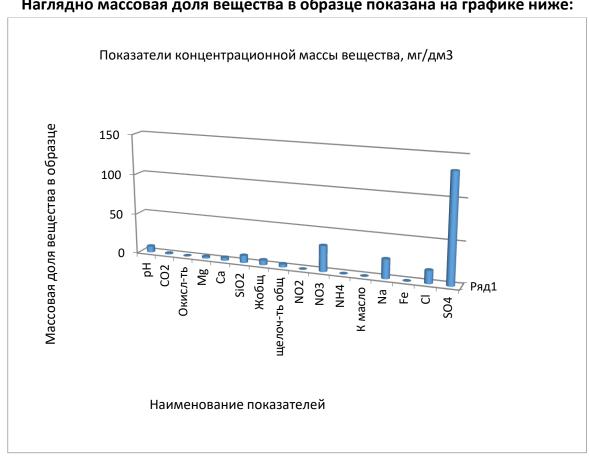
Было использовано следующее специализированное оборудование: pH-метр, кондуктометр, фотоколориметр (КФК-2), спектрофотометр (СФ-26), пламенный фотометр (ПФМ), пламенный анализатор жидкостей (ПАЖ-2), весы аналитические (ВЛР-200).

Анализ элементного состава дал возможность определить и оценить степень токсичности колодезной воды г.Андижана.

Образец воды был взят с соблюдением всех правил и норм и перевезен в лабораторию для дальнейших исследований. Были взяты пробы колодезной воды из крана, вынесенного на поверхность земли. Анализы проводились после осаждения воды.

Результаты определения химических анализов представлены в таблице.

| Наименование           | Обра                                                                                                                                                                                                                                                              | ПДК                                                                                                                                                                                                                                                                                           |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| показания              | зец                                                                                                                                                                                                                                                               | норма                                                                                                                                                                                                                                                                                         |  |  |
| Показания водорода     |                                                                                                                                                                                                                                                                   | 7,0-                                                                                                                                                                                                                                                                                          |  |  |
| (pH)                   | <mark>7,7</mark>                                                                                                                                                                                                                                                  | 7,5                                                                                                                                                                                                                                                                                           |  |  |
|                        |                                                                                                                                                                                                                                                                   | 10,0-                                                                                                                                                                                                                                                                                         |  |  |
| К.м. (CO2), mg/dm3     | 1,1                                                                                                                                                                                                                                                               | 20,0                                                                                                                                                                                                                                                                                          |  |  |
| К.м. перманганатная    |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| окисляемость, mg02/dm3 | 0,4                                                                                                                                                                                                                                                               | 0,2                                                                                                                                                                                                                                                                                           |  |  |
| К.м. ионов магния      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| (Mg2+), mg ekv/dm3     | 2,2                                                                                                                                                                                                                                                               | 5,0                                                                                                                                                                                                                                                                                           |  |  |
| К.м. ионов кальция     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| (Ca2+), mg ekv/dm3     | 3,8                                                                                                                                                                                                                                                               | 7,0                                                                                                                                                                                                                                                                                           |  |  |
| К.м. превращения       |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| кремния в диоксид      |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| кремния (SiO2), mg/dm3 | 9,0                                                                                                                                                                                                                                                               | 25,0                                                                                                                                                                                                                                                                                          |  |  |
| К.м. общей             |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |  |  |
| жесткости, mg ekv/dm3  | 6,0                                                                                                                                                                                                                                                               | 12,0                                                                                                                                                                                                                                                                                          |  |  |
| К.м. общей             | 3,8                                                                                                                                                                                                                                                               | 4,0                                                                                                                                                                                                                                                                                           |  |  |
|                        | показания водорода (рН)  К.м. (СО2), mg/dm3  К.м. перманганатная окисляемость, mg02/dm3  К.м. ионов магния (Mg2+), mg ekv/dm3  К.м. ионов кальция (Ca2+), mg ekv/dm3  К.м. превращения кремния в диоксид кремния (SiO2), mg/dm3  К.м. общей жесткости, mg ekv/dm3 | показания ведорода (рН) 7,7  К.м. (СО2), mg/dm3 1,1  К.м. перманганатная окисляемость, mg02/dm3 0,4  К.м. ионов магния (Mg2+), mg ekv/dm3 2,2  К.м. ионов кальция (Ca2+), mg ekv/dm3 3,8  К.м. превращения кремния в диоксид кремния (SiO2), mg/dm3 9,0  К.м. общей жесткости, mg ekv/dm3 6,0 |  |  |


| Volume. 7, Issue 01, January (2024) |                        |       |       |
|-------------------------------------|------------------------|-------|-------|
|                                     | щелочности, mg ekv/dm3 |       |       |
|                                     | К.м. ионов нитрита     |       | 0,0(o |
|                                     | (NO2-), mg/dm3         | 0,009 | тс)   |
|                                     | К.м. ионов нитрата     |       |       |
| 0                                   | (NO3-), mg/dm3         | 32,0  | 45,0  |
|                                     | К.м. ионов аммония     |       | 0,0(o |
| 1                                   | (NH4+), mg/dm3         | 0,08  | тс)   |
|                                     |                        |       |       |
| 2                                   | К.м. масла, mg/dm3     | 0,05  | 0,5   |
|                                     | К.м. ионов натрия      |       |       |
| 3                                   | (Na+), mg/dm3          | 23,9  | 100,0 |
|                                     | К.м. ионов железа      |       |       |
| 4                                   | (Fe+ , 111), mg/dm3    | отс   | 0,3   |
|                                     | К.м. ионов хлора (CI), |       |       |
| 5                                   | mg/dm3                 | 16,0  | 350,0 |
|                                     | К.м. ионов сульфата    |       |       |

(SO4 2-), mg/dm3

6

## Наглядно массовая доля вещества в образце показана на графике ниже:

133,3



## выводы:

В образце колодезной воды г.Андижана в 2 раза превышены значения перманганатной окисляемости, что указывает на наличие разложения в ней органических веществ. По показаниям рН видимых отклонений не наблюдается. Разница лишь на 0.2, что не является особым отличительным значением по водорода В воде. Концентрационная масса CO2 показанию незначительна, ионов магния и кальция в 2 раза меньше показателей нормы. Это указывает на дефицит солей кальция в воде. По общей жесткости можно сделать выводы, что при норме в 12.0 единиц в данном образце показатель составляет всего 6.0, что определяет ее как сверхжесткую или средней жесткости.[1] Общая щелочность воды почти достигает отметки показаний норм ПДК, но не превышает ее, тем не менее воду можно назвать средне щелочной. Значение оксида азота (NO2) незначительно. Концентрация нитратов (NO3) в воде высокая. Массовая доля натрия (Na) составляет чуть меньше ¼ от нормы ПДК, а железо (Fe) вообще отсутствует. Что указывает на возможность использования ее как питьевой. [2] По содержанию ионов хлора (CI) значения низкие. Массовая концентрация аммония в воде в пределах нормы. В идеале должно быть полное его отсутствие, но в образце содержится аммоний в количестве 0.08 мг/дм3. Согласно СанПиНа 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к воде централизованных систем водоснабжения. Контроль качества» содержание аммония в воде допускается в количестве, не превышающем 2 мг/дм3.[3] Так же по наличию растворенного масла, значения в пределах нормы. По концентрации сульфатов можно сказать, что его значение чуть меньше 1/3 от нормы ПДК, поэтому его количество так же можно считать в пределах нормы.

## ЗАКЛЮЧЕНИЕ:

Вода из образца преимущественно сульфатно-натриевая, средней жесткости с небольшим присутствием солей аммония и натрия, с общей минерализацией 0.18. Все остальные значения в пределах нормы. Согласно СанПиН р.Уз. №0200-06 от 15 мая 2006 года, вода из образца относится к 1-му классу опасности, что характеризует ее как не опасную и вполне питьевую, так как качество воды по всем показателям удовлетворяет требованиям стандарта «Вода питьевая. Гигиенические требования и контроль за качеством». [4] Рекомендуемые меры обработки или очистки воды: отстаивание, фильтрование, обеззараживание, микрофильтрование, кипячение.

## СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИСТОЧНИКОВ:

- 1. Электронный ресурс / Режим доступа: <a href="https://geizer.com/facts/household-filters/the-stiffness-parameter-of-water-quality/">https://geizer.com/facts/household-filters/the-stiffness-parameter-of-water-quality/</a>
  - 2. Электронный ресурс / Режим доступа: <a href="https://cgon.rospotrebnadzor.ru/naseleniyu/gramotnyy-potrebitel/zhelezo-v-vode/">https://cgon.rospotrebnadzor.ru/naseleniyu/gramotnyy-potrebitel/zhelezo-v-vode/</a>
- 3. СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к воде централизованных систем водоснабжения. Контроль качества». Электронный ресурс / Режим доступа: <a href="https://perekrestokinfo.ru/skolko-ammoniya-v-nashej-vode/">https://perekrestokinfo.ru/skolko-ammoniya-v-nashej-vode/</a>
  - 4. Электронный ресурс / Режим доступа: <a href="https://lex.uz/ru/docs/1933428">https://lex.uz/ru/docs/1933428</a>