INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY
Keywords:
Exciton, Binding Energy, Band non-parabolicity, III-V semiconductorsAbstract
We estimate Bohr radius and binding energy of exciton in bulk as well as quantum well for semiconductors with non-parabolic energy band structure. Kane type dispersion relation is used to incorporate such band non-parabolicity. Exciton binding energy in various III-V semiconductors are calculated for two different expressions of non-parabolicity factor α, and results are compared with those for parabolic energy bands. In presence of band non-parabolicity, exciton binding energies are found to increase in quantum wells, whereas such variation is almost insignificant in bulk semiconductors.
References
R. Dingle, in Festkorperprobleme, Advances in Solid State Physics, edited H. J. Queisser, (Pergamon/ Vieweg, Braunschweig, (1975), vol. XV, p. 21.
R. Dingle, W. Wiegmann and C. H. Henry, Phys. Rev. Lett. 33, 827, (1974).
R. C. Miller, D.A. Kleinman, W. T. Tsang and A. C. Gossard, Phys. Rev. B 24,1134, (1981).
G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Phys. Rev. B 26, 1974, (1982).
R. L. Greene, K. K. Bajaj and D. E. Phelps, Phys. Rev. B 29, 1807 ,(1984).
Ronald L. Greene and K. K. Bajaj, Solid State Communications. 88, 955, (1993).
R. P. Leavitt and J. W. Little, Phys. Rev. B 42, 11774 ,(1990).
.V.Ponomarev, L.I.Deych, V.A. Shuvayev, A.A. Lisyansky, Physica E 25, 539, (2005).
Chen- kaikao,Anirban Bhattacharyya, Christos Thomidis, Roberto Paiella and Theodore D. Moustakas, Journal of applied physics 109, 083102, (2011).
E. O. Kane, J. Phys. Chem. Solids I 249, (1957).
Q. H. F. Vrehen, J. Phys. Chem. Solids 29, 129, (1968).
Paul Harrison, Quantum wells, wires and dots, 2nd edition: Theoretical and computational physics of semiconductor nanostructures, Wiley, (2005).