KO‘PHADLARINI KARRALI KO‘PAYTUVCHILARGA AJRATISH
Keywords:
f(x) ning bir karrali ko‘paytuvchilarining ko‘paytmasini X1 bilan belgilasak, 2 karrali ko‘paytuvchilarining ko‘paytmasini esa X2 va xokazo S karrali ko‘paytuvchilarining ko‘paytmasini Xs bilan belgilasak.Abstract
Kompleks sonlar maydoni ustida berilgan f(x) ko‘phadlik uchun
bo‘lib, bo‘lsa s soni f(x) ko‘phadlik k karrali ildiz deyiladi.
n³1 darajali f(x) ko‘phad, R sonlar maydoni ustida keltirilmaydigan ko‘phadlik bo‘lishi uchun bo‘lishi zarrur va etarli.
References
Кодиров, К., Мирзакаримова, Н., & Зайнолобидинова, Х. (2023). ТРИГОНОМЕТРИК ТЕНГЛАМАЛАРНИ ЕЧИШНИНГ БАЪЗИ УСУЛЛАРИ. Евразийский журнал математической теории и компьютерных наук, 3(6), 40-43.
Kodirov K., Nishonboev A., Mirzakarimova N. THE STUDY OF MATHEMATICAL HERITAGE OF AL-KHWARIZMI IN SECONDARY SCHOOLS// OF THE VII INTERNATIONAL SCIENTIFIC CONFERENCE CONFERENCE. MODERN PROBLEMS OF APPLIED MATHEMATICS.
Mirzakarimova Nigora Mirzzakimovna. Some Ways to Solve Irrational Equations// EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE.P.261-264 8. Мирзакаримова, Н. (2022).
Мирзакаримова, Н. (2022). ТРИГОНОМЕТРИК АЙНИЯТЛАРНИ МАТЕМАТИК ИНДУКЦИЯ МЕТОДИ ЁРДАМИДА ИСБОТЛАШНИНГ АФЗАЛЛИГИ. BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI, 2(11), 431-435.
Kabulov, V. K. (2021). MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN NATIONAL UNIVERSITY OF UZBEKISTAN UZBEKISTAN ACADEMY OF SCIENCES VI ROMANOVSKIY INSTITUTE OF MATHEMATICS.
Mirzakarimova, N. M. (2022). FEATURES OF FORMATION OF STUDENTS'TECHNICAL THINKING ABILITIES WHEN CHOOSING THE CONTENT OF MATHEMATICAL EDUCATION IN ACADEMIC LYCEUMS. Oriental renaissance: Innovative, educational, natural and social sciences, 2(12), 362-366.
Mirzakarimova, N., & Karimova, L. (2023, October). KVADRATIK FORMANI KANONIK KO ‘RINISHIGA KELTIRISHDA YAKOBI USULINING AFZALLIGI. In Conference on Digital Innovation:" Modern Problems and Solutions".